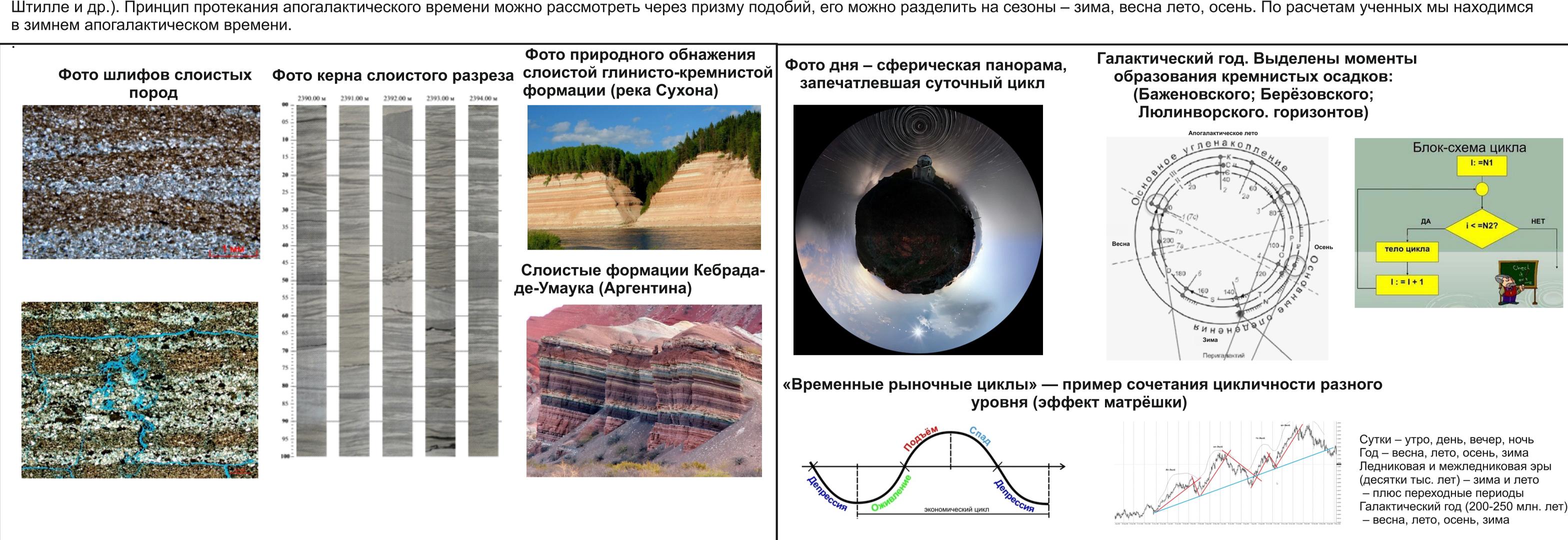


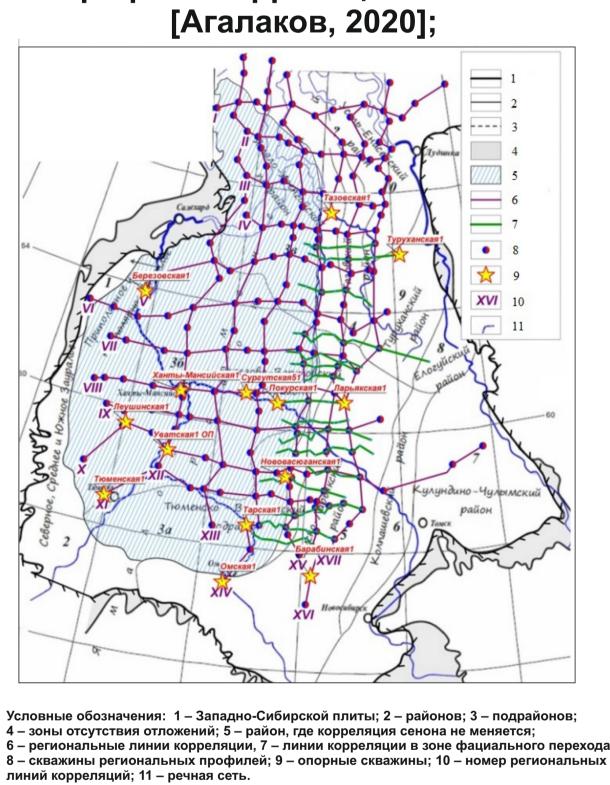

Современный сезонный ручей

ПУТИ РЕАЛИЗАЦИИ НЕФТЕГАЗОВОГО ПОНЕНЦИАЛА ЗАПАДНОЙ СИБИРИ

Особенности строения верхнемеловых отложений Западной Сибири как результат фрактального самоподобия природных структур


Кудаманов А.И., Карих Т.М., Гладышев А.А. (ООО «Тюменский нефтяной научный центр»)

Похожесть части на целое, и наоборот, подразумевает принцип подобий. С помощью метода сравнений предметов можно более точно описывать природные явления и окружающий нас мир в целом. Природные объекты с точки зрения геологии можно увидеть в сезонный ручье, в нем можно разглядеть все фациальные элементы речной меандрирующей системы – сеть речных каналов, старицы рек, береговые долины, прирусловые отмели и другие части системы. Данный принцип позволяет по другим углом взглянуть на окружающий мир. Вглядываясь простые элементы природы можно увидеть в простом сложное.


Сезонный ручей – природная модель Речная дельта реки Миссисипи слабо меандрирующего русла

Принцип подобия присутствует в структурных особенностях осадочных горных пород, которые как правило, характеризуются разномасштабной слоистостью. Комплекс мелких слойков – составная часть слоя. Системы слоев образуют серии слоёв, а серии образуют пачки серий, толщи пачек, чередование толщ и.т.д. Все это многообразие вещественного состава обуславливается разномасштабными цикличными колебаниями условий осадконакопления – суточные, месячные, годовые, солнечные циклы в десятки и сотни лет; циклы в десятки и сотни млн. лет (тектонические циклы Уилсона, Бертрана, Штилле и др.). Принцип протекания апогалактического времени можно рассмотреть через призму подобий, его можно разделить на сезоны – зима, весна лето, осень. По расчетам ученных мы находимся

Пример подобия бассейнов

Региональные и детальные схематичные профили корреляции скважин

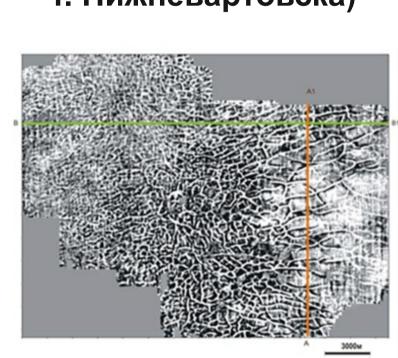
Озеро Карачи Новосибирской области.

Площади палеогеографических областей мелового периода Западной Сибири (тыс. км2) Длина 2500 м, ширина 1450 м, глубина не более 2 м (ил по всему озеру – на глубине

более 0,001 доли длиной оси Другими словами, море – это тончайшая плёнка на дне плоского блюдечка

40-80 см). Площадь – 3,62

км². Глубина составляет не



При длине Западносибирского моря в туроне-кампане 2000 км и глубине не более 100 м, толщина водного слоя составляла всего 0,00005 долей от длины бассейна. Т.е. на 1,5 порядка меньше, чем в оз. Карачи.

Принимая оз. Карачи аналогом турон-кампанского Западносибирского моря, можно представить масштабы распределения объёмов воды по площади бассейна.

Примеры трещиноватости

Седиментационный срез сейсмического куба 3Д на уровне горизонта TR (над сеноманом в районе г. Нижневартовска)

[Гогоненков и др., 2002]

Интервал коньяка-кампана на

по временному срезу на уровне

978 мс.

Песцово-Енъяхинской площадь

седиментационный сейсмический

Септарии

линии АА1 в интервале развития полигональных нарушений (в районе Нижневартовска)

Песцово-Енъяхинской площади: подсвиты березовской свиты,

установлены факты аномальной разломной нарушенности надсеноманских отложений на востоке

Нижневартовского свода (центральной части ЗСП) и в пределах Северного мегавала Пур-Тазовского района

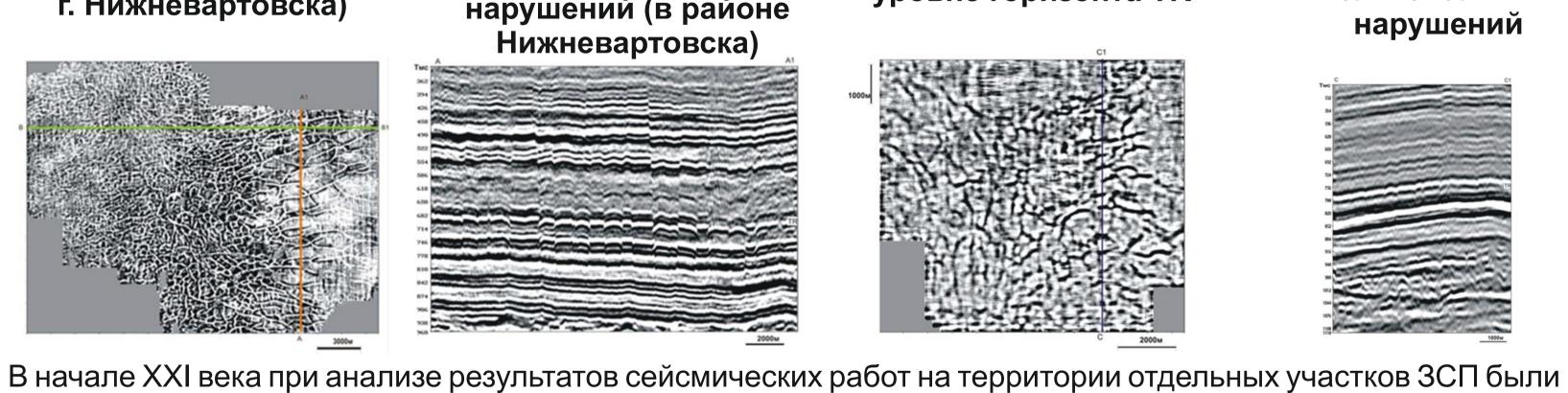
ОГ С2 (кровля верхней

ВПБС) Медвежье

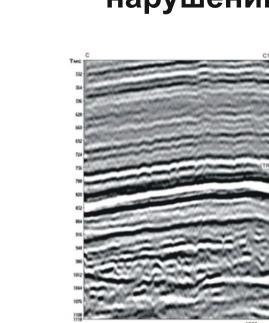
месторождение

ОГ СЗ (кровля стратона НБ1)

Медвежье месторождение


Фрагмент

меридионального


сейсмического разреза по 3Д по площади в Пур-Тазовском районе на уровне горизонта TR

Седиментационный срез

части сейсмического куба

Фрагмент сейсмического разреза по линии СС1 в интервале развития полигональных нарушений

ОГ С3а (кровля стратона НБ2)

Медвежье месторождение

ОГ С4 (кровля кузнецовской свиты)

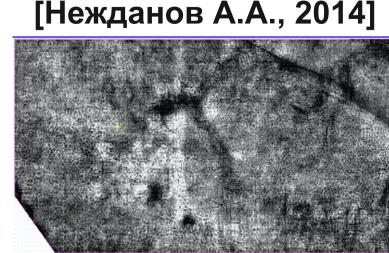
Медвежье месторождение

[Пережогин, 2017].

На палеогеоизохронных поверхностях на временах 0,3-0,8 мсек, было установлено, что вся площадь покрыта сетью пересекающихся линий, образующих полигоны (различные по размеру и форме). Наиболее ярко эффект проявляется внутри горизонта, названного TR, вблизи границы меловых и палеогеновых отложений. На вертикальном сечении вдоль

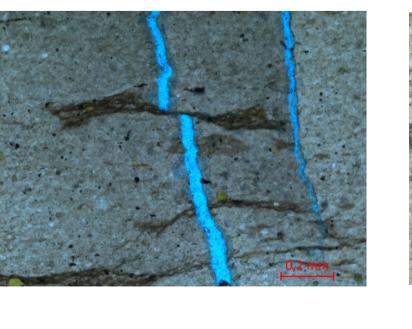
профиля АА1 сеть представляет собой систему малоамплитудных разломных нарушений. На

востоке, где сеть редкая и размер полигонов до 600-1000 м (в поперечнике), они чётко разделяются друг от друга.



Почвы: серо-бурые пустынные, такыры, песчаные пустынные. Глинистые пустыни

В западном направлении густота нарушений растёт и, где размер полигонов менее 200 м, отражение выглядит как цепочка малоразмерных дифрагирующих объектов. Амплитуда смещения отдельных блоков по вертикали меняется от 0 до 15 м. Плоскости разрывов имеют различные наклоны (от субвертикальных до 45°). В отдельных случаях видно смещение всего блока по

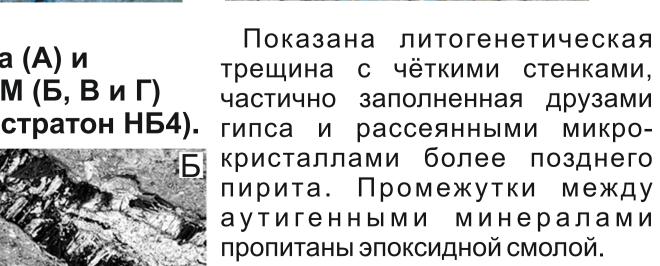

разрешающей способности сейсморазведки уже не хватает для их разделения, и сейсмическое вертикали на 3-10 м, но чаще всего линия разрыва отмечается изгибом краёв блоков вверх или вниз [Гогоненков и др., 2002]

Карта максимальных отрицательных амплитуд по ОГ С2 Енъяхинское месторождение [Нежданов А.А., 2014]

Сенонские газовые залежи – продукт флюидогеодинамических процессов Медвежий ЛУ [Нежданов А.А., 2014]

Примеры трещин синерезиса

Пласт НБ1,


вертикальный срез шлифа

Пласт НБ4,

вертикальный срез

Фото шлифа (А) и Изображения РЭМ (Б, В и Г) опоковидных глин (стратон НБ4).

пирита. Промежутки между аутигенными минералами пропитаны эпоксидной смолой. — результат формирования пустотного пространства при высыхании (испарении растворителя) эпоксидной смолы (коллоида по сути, как и глинисто-кремнистые

илы берёзовской свиты), Пустоты вытянутой формы ориентированы литогенетическую трещину (рис. А, в крест простиранию стенок трещины <u>(аналогично конкрециям-септариям)</u>

могут оставаться и полыми. 1. Показано фрактальное самоподобие природных объектов разного типа (бассейнов седиментации, водных потоков, дельт, слоистости, циклов).

Септарии - глинисто-карбонатные конкреции в осадочных породах, содержащие внутри

себя радиально ориентированные трещины, расширяющиеся к центру конкреции. Во

многих септариях есть также сообщающиеся с радиальными тангенциальные трещины,

все вместе они образуют единую внутреннюю полость. Трещины эти часто бывают

минерализованы, что создаёт перегородчатый рисунок, по которому септарии и получили

свое название (от лат. "septum" – перегородка). Когда полости трещин в септариях

минерализованы, их стенки покрыты кристаллами, кристаллическими или

сферолитовыми корками, нередко они целиком заполнены минеральным веществом. Но

2. Установлена морфологическая аналогия природных систем трещиноватости в осадочных отложениях (пелитоморфных глинисто-кремнистых, изначально высоко водонасыщенных илахколлоидах) – от полигональной (сотни метров) до такыров и септарий (конкреций).

3. Сделан вывод о формировании трещин при обезвоживании отложений (трещины синерезиса с поверхности, в замкнутой системе – септариевого типа).

4. Разномасштабные формы проявления трещин усыхания являются выражением принципа фрактального самоподобия.

5. Очевидно, результаты изучения микротрещин синерезиса лабораторными методами пригодны для характеристики трещин более высокого порядка.